I I II II I I I I I I I I I I I I I I	Printed	Pages	_	4
---------------------------------------	---------	--------------	---	---

Roll No.

JUNE 10218

337677(37)

B. E. (Sixth Semester) Examination, 2020

New Scheme)

(Mech. Engg. Branch)

bas Asia (Specialization): Mechanical) a staff (5)

COMPUTER GRAPHICS

Time Allowed: Three hours

Maximum Marks: 80

andrinogla #15 Minimum Pass Marks: 28

Note: Attempt for 16 marks from each question.

Draw heat and labelled diagrams wherever necessary.

Unit-I

<u> </u>	(a) Define Pixel.	(a) Defined more fluid	
7	(b) Write short notes on:	(b) Bang out the ciffer	7

		(i) Direct View Storage Tube (DVST)	
		(ii) Dot-matrix printer	
	(c)	Explain the working of cathode ray tube (CRT) with	
		diagram.	7
	(d)	List the working of various types of touch panels:	7
		(the Unit-II) day	
2.	(a)	Write any two difference in between DDA and	
		Bresenham's algorithm.	2
	(b)	Write and explain the Bresenham's circle drawing	
		algorithm.	7
	(c)	Explain boundary fill algorithm and flood fill algorithm.	7
	(d)	Find out the pixel position for the line passing through	
		points (1, 1) to (8, 5) using Bresenham's method.	7
		Unit-III	
3.	(a)	Define Convex Hull.	2
	(b)	Bring out the differences between a Bezier curve and cubic splines.	7

337677(37)

[3]				
(c) Write the general expression for 'n' control points				
of a Bezier curve and hence write the parametric				
equation for $n = 5$ control points of a Bezier curve.				
(d) Find the euqation of a Bezier curve which is defined				
by the four points as P_0 (2, 2, 0), P_1 (2, 3, 0),				
$P_2(3, 3, 0)$ and $P_3(3, 2, 0)$ and also find the points				
on the curve for				
$U=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$				
umwords pool from out a Unit-IV being of me under all a se				
(a) Define Projection.				

(b) Derive the transformation matrix for rotation transformation.

4.

(c) State and derive window-viewport viewing transformation equation.

(d) A square having end points A (1, 1), B (6, 1), C (6, 6) and D (1, 6) is rotated by 50° in clockwise direction keeping point (6, 1) fixed. Find the final coordinates.

7

2

7

7

Unit-V

5.	(a) What do you mean by Clipping?	2
	 (b) Find the complete viewing transformation of a triangle with vertices A (2, 2), B (4, 2) and C (3, 6) that maps from window in world co-ordinates with x-context 1 to 5 and y-context 1 to 10 onto viewport : (i) Normalized viewport 	
	(ii) Onto viewport whose opposite corners are at (1, 1) and (4, 4)	14
	(c) Explain and write Cohen-Sutherland line drawing	
	clipping algorithm.	14
	Hoperhoperatic kirking moderate-wegotive majoristi pres. To 1	
	(ii) A square having and points A IV. 11 II to 11. C (o. 6) and D (1, 6) in equited by 50 in clockwise direction keeping point (o. 1) fixed. Food file final.	